On Ihara’s conjectures for Euler–Kronecker constants

نویسندگان

چکیده

As a natural generalization of the Euler–Mascheroni constant $\gamma $, Y. Ihara introduced Euler–Kronecker _K$ attached to any number field $K$. He obtained bounds on conditional upon generalized Riemann hypothesis. I

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proofs On Arnold Conjectures

In this article, we give proofs on the Arnold Lagrangian intersection conjecture on the cotangent bundles, Arnold-Givental Lagrangian intersection conjecture, the Arnold fixed point conjecture.

متن کامل

Some conjectures on codes

Variable-length codes are the bases of the free submonoids of a free monoid. There are some important longstanding open questions about the structure of finite maximal codes. In this paper we discuss this conjectures and their relations with factorizations of cyclic groups.

متن کامل

On Finiteness Conjectures for Modular Quaternion Algebras

It is conjectured that there exist finitely many isomorphism classes of simple endomorphism algebras of abelian varieties of GL2-type over Q of bounded dimension. We explore this conjecture when particularized to quaternion endomorphism algebras of abelian surfaces by giving a moduli interpretation which translates the question into the diophantine arithmetic of Shimura curves embedded in Hilbe...

متن کامل

Open Conjectures on Congruences

Abstract. We collect here various conjectures on congruences made by the author in a series of papers, some of which involve binary quadratic forms and other advanced theories. Part A consists of 100 unsolved conjectures of the author while conjectures in Part B have been recently confirmed. We hope that this material will interest number theorists and stimulate further research. Number theoris...

متن کامل

Some conjectures on congruences

1. Notation. Let Z and N be the sets of integers and positive integers respectively. For b, c ∈ Z the Lucas sequences {U n (b, c)} and {V n (b, c)} are defined by (1.1) U 0 (b, c) = 0, U 1 (b, c) = 1, U n+1 (b, c) = bU n (b, c) − cU n−1 (b, c) (n ≥ 1) and (1.2) V 0 (b, c) = 2, V 1 (b, c) = b, V n+1 (b, c) = bV n (b, c) − cV n−1 (b, c) (n ≥ 1). Let d = b 2 − 4c. It is well known that for n ∈ N, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2023

ISSN: ['0065-1036', '1730-6264']

DOI: https://doi.org/10.4064/aa220729-19-3